
Journal of Computational Physics160,564–576 (2000)

doi:10.1006/jcph.2000.6473, available online at http://www.idealibrary.com on

Low-Dimensional Approximations of Multiscale
Epitaxial Growth Models for Microstructure

Control of Materials

S. Raimondeau∗ and D. G. Vlachos†
Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-3110

E-mail:∗sraimond@athina.ecs.umass.edu,†vlachos@risky.ecs.umass.edu

Received September 28, 1999; revised February 10, 2000

The desire to control the microstructure of materials during growth has recently
led to the development of multiscale models combining molecular information from
microscopic scales with continuum-type information at macroscopic scales. Such
multiscale models for epitaxial growth are here reduced through proper orthogo-
nal decomposition to obtain low-dimensional approximations that can be useful for
on-line control. The approach is illustrated in a stagnation flow microreactor by exam-
ining the effects of substrate temperature and inlet composition on film morphology.
Numerically, this is the first attempt to describe the dynamics of coupled determinis-
tic partial differential equations and stochastic partial differential equations (a master
equation) with a small set of ordinary differential equations. Reduction is carried for
both the fluid phase and the film morphology at different operating conditions. It is
found that while information generated by molecular models can be represented by
relatively low-dimensional deterministic models, the minimum necessary reduced
model dimension for description of microscale features of epitaxial films is higher
than that needed for fluid phase species concentrations. Trained models obtained
from model reduction can be used for nearby parameter changes.c© 2000 Academic Press

INTRODUCTION

The desire to control the microstructure of nanophase materials and thin films at the
molecular level is a well-established trend and underscores the need for fundamental math-
ematical models describing crystal growth interacting with the surrounding fluid. A major
challenge in developing such models is that epitaxial growth of materials is a typical ex-
ample where multiple time and length scales are encountered, as shown schematically
in the inset of Fig. 1. For microscopic scales on the one hand, molecular models such
as Monte Carlo (MC) and molecular dynamics simulations are required to properly cap-
ture the spatiotemporal evolution of pattern formation including nucleation, cluster–cluster
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coalescence, adsorbate-adsorbate interactions, and impurities. For macroscopic scales, on
the other hand, continuum-type partial differential equations (PDEs) are typically used to
describe the conservation equations of continuity, momentum, energy, and species.

The disparity in scales of these processes and the computational demand of molecular
models renders direct modeling of an entire reactor using a molecular model intractable.
To overcome this difficulty, multiscale integration hybrid (MIH) algorithms have recently
been introduced to model catalytic reactors [1], epitaxial growth [2], chemical vapor depo-
sition [3], and flow through tubes [4]. The basic idea of MIH algorithms is to decompose the
domain into two subdomains, one for the macroscopic scale (fluid phase) and one for the mi-
croscopic scale (top layers of the film in our case). The PDEs characterizing the fluid phase
are then discretized and solved through a conventional method, such as a finite difference
scheme and Newton’s algorithm for steady-state or the method of lines for time-dependent
situations. The surface is modeled with a master equation (a stochastic partial differential
equation or SPDE) that is solved using a continuous time MC algorithm [5]. The coupling
of the two subdomains is done at the fluid–film interface through a homogenization of the
boundary conditions, i.e., incorporation of mesoscopically average rates computed from the
molecular model into the boundary conditions of the fluid phase model.

Despite demonstration of the feasibility of such MIH algorithms, such direct numerical
simulations (DNS) are very demanding, making use of MIH algorithms an impractical tool
for on-line control of microstructure of materials. Since the governing coupled determin-
istic PDEs and stochastic master equations are infinite dimensional systems, a successful
method to describe them by a low-dimensional system of ordinary differential equations
represents an important step for on-line control of microstructure of materials, based on
fundamental models. Here, we demonstrate application of the proper orthogonal decom-
position (POD) technique or Karhunen–Loeve expansion to multiscale models in order to
meet this objective.

MULTISCALE MODEL

To illustrate the approach, a stagnation-point flow reactor is chosen to model the deposi-
tion of a precursor transferred with a carrier gas (hydrogen in our case) on a hot substrate at
atmospheric pressure (see inset in Fig. 1). The precursor is transported from the bulk of the
fluid to the surface by convection and diffusion and no gas-phase chemistry is considered.
A similarity transformation converts the two-dimensional fluid mechanics, continuity, heat,
and mass transfer conservation equations into a one-dimensional problem. The transformed
equations are [6]

∂

∂τ

(
∂ f

∂η

)
= ∂3 f

∂η3
+ f

∂2 f

∂η2
+ 1

2

(
ρb

ρ
−
(
∂ f

∂η

)2)
(1)

∂T

∂τ
= 1

Pr

∂2T

∂η2
+ f

∂T

∂η
(2)

∂yj

∂τ
= 1

Scj

∂2yj

∂η2
+ f

∂yj

∂η
, (3)

where f is the stream function,τ is the dimensionless time,η is the dimensionless distance
to the surface,ρ is the density of the mixture,ρb is the density of the mixture in the bulk,
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T is the temperature, Pr is the Prandtl number,yj is the mole fraction of speciesj in the
gas mixture, and Scj is the Schmidt number of speciesj . The Prandtl number is assumed
to be constant and the Schmidt number is species dependent, as indicated in Eq. (3).

The boundary conditions for the macroscopic problem are given by the following equa-
tions, assuming no slip and slow growth at the surface:

Bulk T = Tb,
∂ f

∂η
= 1, yj = yj b (4–6)

Surfacef = 0,
∂ f

∂η
= 0, T = Ts. (7–9)

Furthermore, the surface is inert for the species not participating in the growth:

∂yj

∂η
= 0 for j 6= growing (10)
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′
a− r ′d), for adsorbing species; (11)

hereM j is the molecular weight of speciesj , M is the average molecular weight, andr ′a
andr ′d are the dimensionless rate of adsorption and desorption, respectively. The adsorption
and desorption rates are computed as spatial averages from the MC simulation at each time
step [2].

Due to high dilution, the mass transfer problem can be decoupled from the fluid–heat
transfer one and solved separately. The conservation equations are discretized using a finite
difference scheme on 101 nodes. Newton’s method is used for the steady-state solution
of the flow–heat problem, and the method of lines for the time-dependent mass transfer
problem where transients are considered [7].

Once the precursor arrives at the surface, it participates in microscopic phenomena,
including adsorption, desorption, and migration on the surface. Only first-nearest-neighbor
interactions with bond energy of 17 kcal/mol and the solid-on-solid approximation of a
simple cubic lattice are considered for demonstration of the approach. The adsorption
transition probability is computed from the kinetic theory of gases with a sticking coefficient
of 0.1. Desorption and surface migration follow Arrhenius kinetics and depend on the local
microenvironment of each adsorbed atom (for details of the probabilities and coupling
issues see [2]).

The surface changes in time and space are described according to the master equation

d Pα
dt
=
∑
β

[WαβPβ −WβαPα], (12)

wherePα is the probability of the surface being in configurationα andWαβ is the transition
probability per unit time of the surface going from configurationβ to α. Since such a
SPDE cannot generally be solved analytically, MC methods are often employed. Using a
continuous time MC algorithm with classes of microscopic processes and local update of
the transition probabilities and surface configuration, efficient simulations are carried out so
that sufficiently long times are reached [2]. A lattice size of 120×120 is used for simulating
a (40, 1, 0) misoriented surface.
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FIG. 1. Relative film microroughness over a perfect surface and corresponding growth rate in monolayers/s
versus the surface temperature for two strain rates indicated. A transition from step flow mode to two-dimensional
nucleation with a concomitant increase in growth rate is found as the substrate temperature decreases. The points
are simulation data and the lines just connect them. The inset shows a schematic of the stagnation flow reactor
depicting the different length scales involved.

Figure 1 shows the relative film microroughness and the corresponding growth rates
versus the surface temperature for two strain rates (velocity gradient outside the boundary
layer) indicated, in the limit of no surface diffusion (qualitatively similar behavior is found
in the presence of surface diffusion [2]). The microroughness, representing the number of
broken bonds, is defined as

1+
∑Ns

i, j=1(|hi+1, j − hi, j | + |hi−1, j − hi, j | + |hi, j+1− hi, j | + |hi, j−1− hi, j |)
2× Ns × Ns

, (13)

whereNs× Ns is the lattice size, andhi, j is the height of sitei, j on the surface. Using
Eq. (13), the relative, compared to the perfect (no defects) misoriented surface, film mi-
croroughness is then plotted in all figures. Different growth modes are observed, namely
step flow at high temperatures and two-dimensional nucleation at low temperatures. At
high temperatures, molecules have sufficient time to reach favorable positions on the sur-
face (kinks and steps) due to fast desorption followed by readsorption. The corresponding
growth rate is low because of the fast-activated desorption rate that establishes a partial
equilibrium near the gas–solid interface. At sufficiently lower temperatures, on the other
hand, an increase in growth rate is observed in Fig. 1 caused by slow desorption that leads
to a high supersaturation of adatoms between steps, favoring the two-dimensional nucle-
ation growth mode. According to Fig. 1, two temperatures (600 and 1100 K), representative
of the two different growth modes, were chosen for model reduction by POD described
next.

PROPER ORTHOGONAL DECOMPOSITION

The POD was first used in meteorology under the name of “method of empirical or-
thogonal eigenfunctions” by Lorenz [8] and was further developed by Lumley [9] for
identification of coherent structures in fluid mechanics. The POD is used to reduce tempo-
ral or spatiotemporal data of complex dynamic models to low-dimensional systems. The
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purpose of the POD decomposition is to extract an optimal basis of eigenfunctions describ-
ing the low dimensionality of the problem while capturing the proper dynamics. These
eigenfunctions are obtained from the diagonalization of the two-point correlation matrix
(Karhunen–Loeve expansion theorem) from a given set of numerical or experimental data
[10]. Sirovich [11] demonstrated that using a time correlation matrix, instead, yielded the
same low-dimensional system while reducing significantly the size of the correlation matrix,
especially for two-dimensional problems, making eigenvalue analysis a tractable compu-
tation. For reduction of systems of partial differential equations, the Galerkin method may
then be used to obtain the final linear model. The Galerkin method is used to extract the
time-dependent coefficients of the final linear reduced model using the underlying PDEs
of the given problem. This is done by optimizing the error between the “exact” solution,
obtained through direct numerical integration of the original PDEs, and the truncated lin-
ear approximation. When reducing experimental results, the Galerkin approach cannot be
used, so instead, the data are projected onto the basis of eigenfunctions to give the desired
reduction.

The POD has already been applied to different experimental and model systems. Many
examples of this method can be found in the study of turbulent flows [11–15]. Aside from
fluid flow problems, other examples include the catalytic CO oxidation on a Pt crystal
surface [16], macroinstabilities in the velocity data of a cylindrical stirred tank [17], nonlin-
ear reaction–diffusion problems [18] for control purposes, and nonlinear model reduction
of rapid thermal processing [19], to name a few. It has been shown that the Karhunen–
Loeve–Galerkin procedure (another name for the POD reduction applied to a set of PDEs)
is successful even when other conventional orthonormal sets of eigenfunctions, e.g., poly-
nomials or trigonometric, fail to provide low-dimensional approximation in a complex
geometry [20]. Compared to other existing reduction methods, such as the computational
singular perturbation and low-dimensional manifold theory [21, 22], the POD technique
is attractive, as it can deal with both equations (through Galerkin’s procedure) and experi-
mental data, treating them as snapshots. This is particularly important here, as we have no
close form equations for the surface.

The underlying mathematics is described by Berkoozet al. [13]. The following outlines
the algorithm used based on the method of snapshots. Briefly, let{u(k): k = 1, . . . ,M} be
a set ofM original snapshots obtained through MIH simulations. The average snapshot
ū = 1

M

∑M
k=1 u(k) is then computed and subtracted from the original data to give a new set

{v(k): k = 1, . . . ,M}

v(k) = u(k) − ū. (14)

The time correlation matrix is defined as

(C)i, j = 1

M

∫
D
v(i )(x)v( j )(x) dx, i, j = 1, . . . ,M. (15)

The eigenvectorsA(n) and the corresponding eigenvaluesλn of this matrix, needed for the
determination of the eigenfunctions8n, are

C A(n) = λn A(n), n = 1, . . . ,M (16)
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and

8n(x) =
M∑

k=1

A(n)k v(k)(x), n = 1, . . . ,M. (17)

The truncated series expansion then gives the desired low-dimensional approximation

v̂(x, t) =
N∑

n=1

an(t)8n(x) (18)

û(x, t) = v̂(x, t)+ ū(x), (19)

wherean(t) are the time-dependent coefficients andN represents the number of modes
that captures the essence of our problem. This number depends on the eigenvalues, which
represent the energy of the system studied. As a first approximation,N should be such that
at least 90% of the total energy is captured, and all the other eigenvalues should not be more
than 1% of the first eigenvalue [23].

RESULTS AND DISCUSSION

Using the MIH simulations, the particular situation modeled here is related to changes in
the bulk mole fraction of the precursor. Such changes are of interest due to perturbations in
the inflow composition, startup/shutdown operations, and periodic switching of reactants
in heteroepitaxial growth. In particular, after quasi-steady state has been established, the
bulk mole fraction of the precursor undergoes a step change, resulting in a dynamic change
of the gas-phase concentrations and film morphology. The one-dimensional gas-phase mole
fraction data and the quasi-two-dimensional (based on the solid-on-solid approximation)
surface configurations are then reduced independently using the POD method. Since there
is no close form PDE to describe the stochastic evolution of the surface, as compared to
the mass transfer in the fluid phase, snapshots from both phases are treated as experimental
configurations. The time-dependent coefficients are computed by projection of these data
on the basis set of eigenfunctions.

Gas-Phase Data Reduction

We start first with the reduction of the fluid phase data. Figure 2a shows the time evolution
of the gas-phase mole fraction from DNS (solid lines) as well as the POD reduction of the
system (dashed lines) at different spatial positions of the boundary layer indicated for
conditions corresponding to step flow growth mode. The number of monolayers deposited
versus time is also depicted. The growth problem is a fully time dependent one, involving
a moving interface (a Stefan problem). However, for relatively low growth rates, after
an initial transient, the system attains a quasi-steady state prior to the step change in the
precursor’s bulk mole fraction; that is, the growth rate, gas-phase mole fractions, and the
surface roughness are constant. After the step change indicated by a vertical arrow, at such
a low strain rate (1 s−1), a new quasi-steady state is established in a few seconds (or a
few monolayers). The reduced model captures very well the dynamic change in the mole
fraction at all positions with only 5 modes using 100 snapshots for the reduction. Figure 2b
depicts the temporal evolution of the gaseous mole fraction profile from the full simulation
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FIG. 2. Time evolution of the precursor mole fraction at three different spatial positions indicated (a) and
spatial evolution at times (from right to left) of 2.20, 2.26, 2.32, 2.38, 2.44, 2.56, 2.68, 2.85, 3.12, and 5 s (b) from
the direct numerical simulation (solid lines) and the reduced model (dashed lines) with five modes at 1100 K and
a strain rate of 1 s−1. Good agreement is found. Panel (a) also shows the number of monolayers deposited versus
time. The vertical arrow indicates the instant at which the step change in the precursor’s bulk mole fraction occurs.

(solid lines) and the reduced model (dashed lines). Quite good agreement is again seen,
except for short times after the step change in the inlet composition near the bulk of the
boundary layer, which can further be improved by increasing the number of modes of the
reduced model.

It is observed that although the mole fraction of the gaseous species just above the surface
has a noisy signal due to the coupling between the deterministic and stochastic models, the
POD reduction tends to smooth this signal before and after the step change. Furthermore, as
the number of modes in the POD reduction increases, the noise in the mole fraction at the first
node (just above the surface) rises. This is, however, undesirable if this model is to be used,
in conjunction with measurements of species concentrations near the surface, for on-line
control. This noise is caused by the stochastic nature of the MC algorithm and can be reduced
only at the expense of a larger lattice in MC simulations. In general, due to the dissipative
structure of the mass transfer PDE, noise is diminished very quickly with increasing distance
from the surface, resulting in model reduction reminiscent of a purely deterministic model.
Overall, it appears that the noise level in MIH simulations is relatively low to allow for
model reduction without requiring extraordinary large molecular simulation boxes.

The second and the third columns of Table I give the dominant eigenvalues along with the
captured energy as the number of modes increases. Although 99.6% of the energy is captured
by the first mode, using just one mode is not enough to reproduce the qualitative shape of
the dynamic response of the system. To further illustrate the effect of the number of modes
on the spatiotemporal behavior, the relative error (based on theL2 norm) of the reduced
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TABLE I

Eigenvalues, Energy Captured, and Corresponding Deviation of the POD Re-

duced Model from the Direct Numerical Simulation Solution versus the Number

of Modes for Reduction of Gas-Phase Transport Data at 1100 K and 1 s−1

Mode Eigenvalue Energy Modes % Error

1 9.95× 10−1 0.99566931 1 27.80
2 4.14× 10−3 0.99981223 5 2.91
3 1.74× 10−4 0.99998617 7 1.94
4 1.24× 10−5 0.99999853 8 1.90
5 1.20× 10−5 0.99999973 9 1.97
6 2.49× 10−7 0.99999998 10 2.00
7 1.80× 10−8 1.00000000 15 2.29

model û compared to the MIH solutionu was computed. Results are shown in the last
column of Table I. Even though there is an optimal number of modes to obtain the smallest
error, the error is only slightly dependent on the number of modes when more than about
five modes are kept. The number of modes chosen for the reduction is then based on this
error, the total energy captured, as well as a qualitative comparison of the dynamic behavior
with the DNS results.

Figures 3a and 3b show the first three spatial eigenfunctions8n(x) and the time-
dependent coefficientsan(t) of the POD reduction, respectively. The first eigenfunction can

FIG. 3. The first three eigenfunctions (a) and time-dependent coefficients (b) for the fluid-phase reduction
shown in Fig. 2. The shape of the first eigenfunction and the corresponding first time dependent coefficient resemble
the spatial and temporal evolution of the precursor’s mole fraction.
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be associated with the general shape of the spatial gaseous mole fraction profile shown in
Fig. 2b. The other eigenfunctions appear to be harmonic-like and capture the slight differ-
ence in shape at short times following the change in the concentration of the precursor. As
for the an(t), the first one clearly reflects the time-dependent shape of the response, and
the others take into account the noise of the mole fraction. Similar reduction features have
been found at other temperatures as well.

Film Morphology Data Reduction

The morphology of the film is one of the most important optimization features in crystal
growth, and thus capturing the film microroughness by a reduced model is of interest for
on-line control of the entire process. This model reduction situation differs due to the
stochastic nature of data generated by MC simulations and proves to be more challenging
than the low-noise one-dimensional fluid phase data. To our knowledge, this is the first
time that information generated by a molecular simulation has been represented by a small
set of ODEs. We have recently shown that similar SPDEs capturing coupled microscopic
processes, such as adsorption, desorption, and surface diffusion, can give at sufficiently
large length and time scales a mesoscopic (or local mean field) integrodifferential PDE
[24]. Under certain conditions, the latter is reminiscent of the classic diffusion–reaction
equation (or the Cahn–Hilliard equation), which is known to be dissipative.

Table II depicts the dominant eigenvalues along with the energy captured with increas-
ing number of modes. In fact, with just one mode, while most of the energy is captured
(>99.99%), only the average morphology (film orientation) of the film is captured without
microscopic scale features. It appears that the stochastic nature of a limited number of
MC snapshots analyzed by the POD makes identification of coherent structures difficult,
so a larger number of modes is required to reasonably reproduce the original pattern. This
observation is further rationalized by the fact that most of the remaining eigenvalues are of
the same order of magnitude, implying that many modes have a small and similar contribu-
tion to the overall film morphology. Choosing an optimal number of modes for the surface
reduction is thus more difficult depending on which property one wishes to study. Indeed,
while the average height of each snapshot is captured with only one mode, reproducing
the microroughness requires a higher-order reduction, as discussed below. More research
is needed to exploit whether this is a general feature of molecular simulations.

TABLE II

Eigenvalues, Energy Captured, and Corresponding Deviation of the POD Re-

duced Model from the Direct Numerical Simulation Solution versus the Number

of Modes for Reduction of Film Topology Data at 1100 K and 1 s−1

Mode Eigenvalue Energy Modes % Error

1 9.99× 10−1 0.9999917 1 0.84
2 3.52× 10−6 0.9999953 5 0.56
3 3.09× 10−6 0.9999983 9 0.53
4 4.83× 10−7 0.9999988 10 0.52
5 4.28× 10−7 0.9999993 11 0.54
6 2.05× 10−7 0.9999995 15 0.56
7 1.75× 10−7 0.9999996 25 0.88
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FIG. 4. Snapshots of the film topography from DNS (a) and POD (b) at 1100 K and a strain rate of 1 s−1

corresponding to Fig. 2. Panels (c) and (d) show the corresponding snapshots for another reduction at 600 K and
a strain rate of 100 s−1. At high temperatures, smooth terraces with fluctuations along the steps are observed. At
low temperatures, the topography of the surface is rougher due to two-dimensional nucleation.

As an example, Fig. 4 shows snapshots of the surface morphology from DNS and the
POD reduction att = 2.7 s for two different temperatures indicated. At high temperatures
(e.g., 1100 K), the surface is smooth (as seen in Fig. 1), and a step change in the precursor’s
mole fraction has little influence on the growth rate and surface roughness, making exper-
imental sensing of such a change difficult. The morphology of the film predicted with the
reduced model using 10 modes, suggested by the minimum error shown in Table II, shows
a smoother variation of height compared to the distinct steps of one snapshot of DNS. At
lower temperatures (e.g., 600 K) and higher strain rates (e.g., 100 s−1), on the other hand,
the surface is microrough and the process is mass transfer limited, so a step change in the
precursor’s mole fraction leads to a more noticeable increase in the surface microroughness
and growth rate. As seen in Fig. 4d, the surface obtained with the reduced model captures
the same morphological trends as the one from the DNS for this set of conditions with 20
modes out of 278 snapshots.

Figure 5 shows the first three normalized spatial eigenfunctions8n and the time-dependent
coefficientsan(t). The first eigenfunction is practically flat, explaining the fact that one mode
only captures the average morphology contained in the mean (see algorithm above). The
rest of the eigenfunctions are oscillatory, giving rise to microscale features. The first time-
dependent coefficient clearly has the same shape as the curve representing the number of
deposited monolayers versus time (Fig. 2a), which can be associated with the growth rate
of the film. The amplitude of the remaining time-dependent coefficients is small.

Next we examine the ability of the POD reduction to capture the film microrough-
ness (a spatially average quantity). Figure 6 shows the microroughness of the surface
obtained from the DNS (solid line) and the one reconstructed from the POD reduction
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FIG. 5. First three spatial eigenfunctions (a–c) and corresponding time-dependent coefficients (d) for the
surface reduction at a temperature of 1100 K and a strain rate of 1 s−1 corresponding to Fig. 2. The dominant
eigenfunction has a flat shape compared to the remaining eigenfunctions, which are oscillatory.

(dashed line) with 20 modes at 600 K and a strain rate of 100 s−1 (see corresponding snap-
shots in Figs. 4c and 4d). The reduced model is able to reasonably capture the change
in the surface microroughness as the precursor’s mole fraction changes; better agree-
ment can be achieved by increasing the number of modes. Since microroughness is com-
puted using integers (original snapshots from MC simulations) and real numbers (POD
data), respectively, the surface map computed through POD does not exhibit as sharp
patterns.

FIG. 6. Film microroughness from the direct numerical simulation (solid lines) and the POD reduction (dashed
lines) using 20 modes from 278 snapshots as a function of time at 600 K and a strain rate of 100 s−1. The vertical
arrow indicates the instant of the step change in the precursor’s inlet mole fraction.
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FIG. 7. Predictions of a trained reduced model (dashed lines) for a step change in the precursor’s inlet mole
fraction from 2× 10−4 to 5× 10−4 at three spatial positions indicated along with the corresponding DNS (solid
lines) at 600 K and 100 s−1. The vertical arrow indicates the instant of the step change in the precursor’s inlet mole
fraction.

Toward Use of Reduced Models for Experiments

From a practical point of view, one would be interested in using such a low-dimensional
model obtained from first principles’ models in conjunction within situ diagnostic tech-
niques for on-line control. To achieve this computationally, a reduced model can be derived
at several distinct parameter values representing the desired regime of operation, as has been
done with fluid mechanics problems [11, 25]. The derived low-dimensional model can then
be used with interpolation or slight extrapolation of parameter values. Experimental sens-
ing, on the other hand, can include either gas-phase species concentrations by techniques
such as microprobe mass spectrometry and laser induced fluorescence or morphology of the
film over length scales similar to the ones captured by the MC method by scanning probe
techniques such as scanning tunneling microscopy.

To further explore the feasibility of such an approach, the results from the DNS were
reduced for different step changes in the precursor’s mole fraction. The spatiotemporal
dynamics obtained from the reduced models was then parameterized as a function of the
precursor’s bulk mole fraction. More precisely, model reduction was conducted for two
perturbations in the precursor’s mole fraction (from 2×10−4 to 4×10−4 and to 6×10−4), and
a linear interpolation of the reduced models gave the response for intermediate precursor’s
mole fraction perturbations. Figure 7 is an illustrative example at 600 K and a strain rate of
100 s−1 showing the DNS curve for a step change from 2×10−4 to 5×10−4 and the trained
one resulting from the POD reduced models using five modes. While similar analysis can
in principle be performed on the film microroughness, such an increase in the precursor’s
mole fraction has little effect on the film microroughness. It appears then that small changes
in operating conditions may be more easily detectable by gas-phase rather than surface
techniques. Similar analysis was performed for a case where extrapolation was necessary
(a negative step change from 2× 10−4 to 1× 10−4) giving again satisfactory results.

CONCLUSIONS

We have successfully reduced for the first time the spatiotemporal dynamics of multiscale
models coupling continuum fluid phase PDEs and stochastic MC simulations (an SPDE) of
the film morphology through proper orthogonal decomposition for a step change in the bulk
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concentration of the precursor. Such reduction of complex multiscale systems is an impor-
tant step for on-line control of film quality. Due to the stochastic nature of a limited number
of surface MC snapshots analyzed, satisfactory reduced models for the film can be derived at
the expense of higher dimension than that of the gas phase. However, some details of spatial
features (e.g., sharpness) are not easily reproduced. Furthermore, it was found that interpo-
lation or extrapolation of parameter values of POD reduced models is feasible. This result is
of particular interest for on-line fundamental model based control of microstructure during
growth of thin films. Obviously, further advances inin situexperimental sensing techniques
is highly desirable in order to achieve control of microstructure of miniaturized films and
nanoparticles along with application of such reduced models to experimental systems.
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